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Soft body physics



Soft bodies

* |In reality, objects are not purely rigid
— for some it is a good approximation

— but if you hit them with enough force, they will deform or
break down

* |In a game, you often want to see soft bodies (i.e.
deformable objects)
— car body, anything you punch or shoot at, etc.
— piece of cloth, flag, paper sheet, etc.
— snow, mud, lava, liquid, etc.
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Elasticity

» Elasticity Is the primary concept in soft body
physics

* Property by which the body returns to its original
shape after the forces causing the deformation are
removed

— A plastic rod can easily be bended, and returned to its
original form

— A steel rod is difficult to bend, but can also return to its
original form
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Stress

* The stress within an object is the magnitude of an
applied force divided by the area of its application

— large value when the force is large or when the surface
IS small

 Itis a pressure measure o and has the unit Pascal
Pa = N/m?*

* Example
— the stress on the plane
is o = mg/(mr?)
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Strain

* The strain on an object € Is the fractional
deformation caused by a stress

— dimensionless (change in dimension relative to original
dimension)

— measures how much a deformation differs from a rigid

body transformation

* negative if compression, zero if rigid body transformation,
positive if stretch

* Example
— the strain on the
rodise = AL/L
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Body material

« Stress and strain do not contain information about
the specific material (i.e. deformation behavior) to
which a force Is applied

 The amount of stress to produce a strain does

* Therefore we can model it by the ratio of stress to
strain

— usually in a linear direction, along a planar region or
throughout a volume region
* Young’s modulus, Shear modulus, Bulk modulus
— they describe the different ways the material changes
shape due to stress
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Young’'s modulus

* The Young’s modulus Is defined as the ratio of
linear stress to linear strain

_ linear stress  F/A

 linear strain  AL/L

« Example

L+ AL
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Shear modulus

 The Shear modulus iIs defined as the ratio of
planar stress to planar strain

_ planar stress  F/A

~ planar strain  AL/L

« Example
‘IL‘
AL

U= Universiteit Utrecht Game Physics



Bulk modulus

 The Bulk modulus is defined as the ratio of volume
stress to volume strain (inverse of compressibility)

volume stress AP

~ volume strain AV /V

* Example P=F/A P+ AP

F + AF

siteit Utrecht Game Physics

10



Poisson’s ratio

* The Poisson’s ratio Is the ratio of transverse to

axial strain
d transverse strain

V = — 3 3
d axial strain

— negative transverse strain in axial tension, positive in
axial compression

— negative axial strain in compression, positive in tension
— equals 0.5 in perfectly incompressible material

* If the force is applied along x then we have

B dex dex
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Poisson’s ratio Q/j

« Example of a cube of size L
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Continuum mechanics

« A deformable object is defined by Its rest shape
and the material parameters

* |n the discrete case, the object M Is a discrete set
of points with material coordinates m € M that
samples the rest shape of the object

 When forces are applied, the object deforms
— each m moves to a new location x(m)

— u(m) = x(m) — m can be seen as the displacement
vector field

— e.g. a constant displacement field is a translation of the
object
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Continuum mechanics

« Material coordinate P with position X is deformed
to p with position x

« Material coordinate Q with position X 4+ dX Is
deformed to g with position x + dx

* |f the deformation is very small (i.e. linear
deformation in interval At), the displacements of
the material coordinates can be described by

x+dx=X+dX+ulX+dX)
dx =X —x+dX +u(X + dX)
dx =dX +u(X + dX) — u(X)
dx = dX + du
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Continuum mechanics

u(X+dX) =u(lX) +du

0
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Continuum mechanics

* du Is the relative displacement vector

* |t represents the relative displacement of Q with
respect to P Iin the deformed configuration

* Now If we assume that Q is very close to P and
that the displacement field is continuous, we have
uX+dX)=uX)+du=ulX)+Vu=+dX

where the gradient of the displacement field is (in
3D) the 3 x 3 matrix of the partial derivatives of u
Uy Uy Uy

Vu=|V Vy Vz|lwhereu= u,v,w)l
Wy Wy Wz
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Continuum mechanics

« With that definition of the relative displacement
vector, we can calculate the relative position of g

dx =dX +du = dX + Vu xdX
dx = +Vu)dX =F «dX

 We call F the material deformation gradient tensor

* |t characterizes the local deformation at a material
coordinate, I.e. provides a mapping between the
relative position at rest and the relative position
after deformation
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Strain and stress

The strain and stress are related to the material
deformation gradient tensor F, and so to the
displacement field u

In interactive applications, we usually use the Green-
Cauchy strain tensors

€c = %(Vu + (VW) + (Tw)T'7u)

1 T
€Ec = E(Vu + (Vu)')

And stress tensor from Hooke’s linear material law
o=F=x¢€

where E is the elasticity tensor and depends on the
Young’s modulus and Poisson’s ratio (and more)
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Modeling soft bodies

* Two types of approaches are possible to simulate
deformable models

— Lagrangian methods (particle-based)

« a model consists of a set of moving points carrying material
properties

« convenient to define an object as a connected mesh of points or
a cloud of points, suitable for deformable soft bodies

« examples: Finite Element/Difference/Volume methods, Mass-
spring system, Coupled particle system, Smoothed particle
hydrodynamics

— Eulerian methods (grid-based)

* scene is a stationary set of points where the material properties
change over time
* boundary of object not explicitly defined, suitable for fluids
N

%T§ Universiteit Utrecht Game PhySiCS 19



Finite Element Method

« FEM is used to numerically solve partial differential
equations (PDEs) by discretization of the volume
Into a large finite number of disjoint elements (3D
volumetric mesh)

 The PDE of the equation of motion governing
dynamic elastic materials is given by
pxa=V-oc+F
where p Is the density of the material, a Is the

acceleration of the element, V - ¢ Is the divergence
of stress (internal forces) and F the external forces
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Finite Element Method

* First the deformation field u Is estimated from the
positions of the elements within the object

 Given the current local strain, the local stress Is
calculated

* The equation of motion of the element nodes is
obtained by integrating the stress field over each
element and relating this to the node accelerations
through the deformation energy

E = fe(m) * o(m) dm
%
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Finite Differences Method

If the object M Is sampled using a regular spatial
grid, the PDE can be discretized using finite
differences (FD)

— easier to implement that FEM

— difficult to approximate complex boundaries

Deformation energy comes from difference
between metric tensors of the deformed and
original shapes

Derivative of this energy Is discretized using FD

Finally semi-implicit integration Is used to move
forward through time
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Finite Volume Method

In the Finite Volume method, the nodal forces are not
calculated from the derivation of the deformation
energy

But first internal forces f per unit area of a plane (of
normal n) are calculated from the stress tensor

f =0 *Nn
The total force acting on a face A of an element is

fAzfadAzA*a*n
A

for planar element faces (stress tensor constant
within an element)

By iterating on all faces of an element, we can then
distribute (evenly) the force among adjacent nodes
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Boundary Element Method

The boundary element method simplifies the finite
element method from a 3D volume problem to a
2D surface problem

— PDE is given for boundary deformation

— only works for homogenous material

— topological changes more difficult to handle
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Mass-Spring System

An object consists of point masses connected by a
network of massless springs

The state of the system Is defined by the positions
x; and velocities v; of the massesi =1:--n

The force f; on each mass is computed from the
external forces (e.g. gravity, friction) and the spring
connections with its neighbors

The motion of each mass point f; = m;a; IS
summed up for the entire system In
M=xa=f(x,v)

where M Is a 3n X 3n diagonal matrix
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Mass-Spring System

ne mass points are usually regularly spaced in a
D lattice

ne 12 edges are connected by structural springs
— resist longitudinal deformations

* Opposite corner mass points are connected by
shear springs
— resist shear deformations

* The rest lengths define the rest shape of the object
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Mass-Spring System

* The force acting on mass point i generated by the
spring connecting i and j IS

f KSl ‘xl]‘ o ll])

‘ l]‘
where x;; Is the vector from positions i to j, K; Is
the stiffness of the spring and [;; Is the rest length

* To simulate dissipation of energy along the
distance vector, a damping force is added

Kd (vj = ”i)Txij
fl l xiijij l]

5?; M S Universiteit Utrecht Game Physics




Mass-Spring System

 |ntuitive system and simple to implement

* Not accurate as does not necessarily converge to
correct solution
— depends on the mesh resolution and topology
— spring constants chosen arbitrarily

« Can be good enough for games, especially cloth
animation

— as can have strong stretching resistance and weak
bending resistance
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Coupled Particle System

 Particles interact with each other depending on
their spatial relationship

« Referred to as spatially coupled particle system
— these relationships are dynamic, so geometric and
topological changes can take place
« Each particle p; has a potential energy Ep; which is
the sum of the pairwise potential energies between
the particle p; and the other particles

Ep; = z Epij
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Coupled Particle System

* The force f; applied on the particle at position p; Is

fi = —Vpipp; = _2 VpiEPij

JE!
dEp; dEp; dEpi)
where V., - = (
Pikpi dx; ' dy; ' dz;

« To reduce computational costs, interactions to a
neighborhood is used

— potential energies weighted according to distance to
particle

N
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Smoothed Particle Hydrodynamics

« SPH uses discrete particles to compute
approximate values of needed physical guantities
and their spatial derivatives

— obtained by a distance-weight sum of the relevant
properties of all the particles which lie within the range
of a smoothing kernel

* Reduces the programming and computational
complexity

— suitable for gaming applications
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Smoothed Particle Hydrodynamics

* The equation for any quantity A at any point r IS
given by

A;
A(r) = Zm]-;Wdr — rj‘,h)
; j
j

— where W is the smoothing kernel (usually Gaussian
function or cubic spline) and h the smoothing length
(max influence distance)

— for example the density can be calculated as

p() = ) myW(lr 1| h)
J

 |tis applied to pressure and viscosity forces, while

external forces are applied directly to the particles
iy,
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Smoothed Particle Hydrodynamics

* The spatial derivative of a quantity can be
calculated from the gradient of the kernel

— the equations of motion are solved by deriving forces
« By varying automatically the smoothing length of

Individual particles you can tune the resolution of a
simulation depending on local conditions

— typically use a large length in low particle density
regions and a smaller length in high density regions

e Easy to conserve mass (constant number of
particles) but difficult to maintain incompressibility
of the material
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Eulerian Methods

« Eulerian methods are typically used to simulate
fluids (liquids, smoke, lava, cloud, etc.)

 The scene is represented as a regular voxel grid,
and fluid dynamics describes the displacements
— we apply finite difference formulation on the voxel grid

— the velocity is stored on the cell faces and the pressure
IS stored at the center of the cells

« Heavily rely on the Navier-Stokes equations of
motion for a fluid
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Navier-Stokes equations

* They represent the conservation of mass and
momentum for an incompressible fluid

V-u=20

Inertia (per volume) Divergence of stress

——te—m— —,—
p(us+u-Vvu)=V-(vWVu) —-Vp+f

Unsteady  Convective Pressure Other body

: : Viscosity :
acceleration acceleration gradient  forces

— u; IS the time derivative of the fluid velocity (the
unknown), p Is the pressure field, v is the kinematic
viscosity, f Is the body force per unit mass (usually just

gravity pg)
Wi
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Navier-Stokes equations

* First f Is scaled by the time step and added to the
current velocity

« Then the advection term u - Vu iIs solved

— It governs how a quantity moves with the underlying
velocity field (time independent, only spatial effect)

— It ensures the conservation of momentum
— sometimes called convection or transport
— solved using a semi-Lagrangian technique
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Navier-Stokes equations

 Then the viscosity term V - (v Vu) = vV?u is solved
— It defines how a cell interchanges with its neighbors
— also referred to as diffusion

— viscous fluids can be achieved by applying diffusion to
the velocity field

— It can be solved for example by finite difference and an
explicit formulation
« 2-neighbor 1D:
ui(t) = v * At * (w41 + uj_q — 2uy)
 4-neighbor 2D:
U () = v At * (Uppq; + Ujmqj + U jar + U jog — dU;5)
- Taking the limit gives indeed vV?u
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Navier-Stokes equations

« Finally, the pressure gradient is found so that the
final velocity will conserve the volume (i.e. mass
for iIncompressible fluid)

— sometimes called pressure projection
— It represents the resistance to compression —Vp

———

————

! 4"4— Lesser density

’ / / .
- L L Greater density
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Navier-Stokes equations

* We make sure the velocity field stays divergence-
free with the second equation V -u = 0, I.e. the
velocity flux of all faces at each fluid cell is zero
(everything that comes in, goes out)

* The equation u(t + At) = u(t) — AtVp is solved
from its combination with V - u = 0, giving

V-u(t+At) =V-u(t) —AtV-(Vp) =0
S AtV2p =TV - u(t)
with which we solve for p, then plug back in the
u(t + At) equation to calculate the final velocity
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Navier-Stokes equations

« Compressible fluids can also conserve mass, but
their density must change to do so

* Pressure on boundary nodes
— In free surface cells, the fluid can evolve freely (p = 0)
 so that for example a fluid can splash into the air

— Otherwise (e.g. in contact with a rigid body), the fluid
cannot penetrate the body but can flow freely in
tangential directions uyoyngary * M = Upoay " N
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End of
Soft body physics

Next

Physics engine design and
Implementation



