
Game Physics

Game and Media Technology

Master Program - Utrecht University

Dr. Nicolas Pronost

Soft body physics

Game Physics

• In reality, objects are not purely rigid

– for some it is a good approximation

– but if you hit them with enough force, they will deform or

break down

• In a game, you often want to see soft bodies (i.e.

deformable objects)

– car body, anything you punch or shoot at, etc.

– piece of cloth, flag, paper sheet, etc.

– snow, mud, lava, liquid, etc.

3

Soft bodies

Game Physics

• Elasticity is the primary concept in soft body

physics

• Property by which the body returns to its original

shape after the forces causing the deformation are

removed

– A plastic rod can easily be bended, and returned to its

original form

– A steel rod is difficult to bend, but can also return to its

original form

4

Elasticity

Game Physics

• The stress within an object is the magnitude of an

applied force divided by the area of its application

– large value when the force is large or when the surface

is small

• It is a pressure measure 𝜎 and has the unit Pascal

𝑃𝑎 = 𝑁/𝑚2

• Example

– the stress on the plane

 is σ = 𝑚𝑔/ 𝜋𝑟2

5

Stress

𝑟

𝑊

𝑚

Game Physics

• The strain on an object 𝜖 is the fractional

deformation caused by a stress

– dimensionless (change in dimension relative to original

dimension)

– measures how much a deformation differs from a rigid

body transformation

• negative if compression, zero if rigid body transformation,

positive if stretch

• Example

– the strain on the

rod is 𝜖 = ∆𝐿 𝐿

6

Strain

𝐹
𝑡

𝑡 + ∆𝑡

𝐿

𝐿 + ∆𝐿

Game Physics

• Stress and strain do not contain information about

the specific material (i.e. deformation behavior) to

which a force is applied

• The amount of stress to produce a strain does

• Therefore we can model it by the ratio of stress to

strain

– usually in a linear direction, along a planar region or

throughout a volume region

• Young’s modulus, Shear modulus, Bulk modulus

– they describe the different ways the material changes

shape due to stress

7

Body material

Game Physics

• The Young’s modulus is defined as the ratio of

linear stress to linear strain

𝑌 =
𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹/𝐴

∆𝐿/𝐿

• Example

8

Young’s modulus

𝐿 + ∆𝐿

𝐹 𝐴

Game Physics

• The Shear modulus is defined as the ratio of

planar stress to planar strain

𝑆 =
𝑝𝑙𝑎𝑛𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑝𝑙𝑎𝑛𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹/𝐴

∆𝐿/𝐿

• Example

9

Shear modulus

𝐿

𝐴 𝐹

∆𝐿

Game Physics

• The Bulk modulus is defined as the ratio of volume

stress to volume strain (inverse of compressibility)

𝐵 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
=
∆𝑃

∆𝑉/𝑉

• Example

10

Bulk modulus

𝐴

𝑃 = 𝐹/𝐴

𝑉

𝐹 𝐴

𝑃 + ∆𝑃

𝑉 +
∆𝑉

𝐹 + ∆𝐹

Game Physics

• The Poisson’s ratio is the ratio of transverse to

axial strain

𝜈 = −
𝑑 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

𝑑 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

– negative transverse strain in axial tension, positive in

axial compression

– negative axial strain in compression, positive in tension

– equals 0.5 in perfectly incompressible material

• If the force is applied along 𝑥 then we have

𝜈 = −
𝑑𝜖𝑦

𝑑𝜖𝑥
= −
𝑑𝜖𝑧
𝑑𝜖𝑥

11

Poisson’s ratio

Game Physics

• Example of a cube of size 𝐿

𝑑𝜖𝑥 =
𝑑𝑥

𝑥
 𝑑𝜖𝑦 =

𝑑𝑦

𝑦
 𝑑𝜖𝑧 =

𝑑𝑧

𝑧

−𝜈
𝑑𝑥

𝑥

𝐿+∆𝐿

𝐿

=
𝑑𝑦

𝑦

𝐿−∆𝐿′

𝐿

=
𝑑𝑧

𝑧

𝐿−∆𝐿′

𝐿

⇔

1 +
∆𝐿

𝐿

−𝑣

= 1 −
∆𝐿′

𝐿
⇔ 𝜈 ≈

∆𝐿′

∆𝐿

12

Poisson’s ratio

𝐹

Δ𝐿

𝐿

∆𝐿′

8.1-8.5

Game Physics

• A deformable object is defined by its rest shape

and the material parameters

• In the discrete case, the object 𝑀 is a discrete set

of points with material coordinates 𝑚 ∈ 𝑀 that

samples the rest shape of the object

• When forces are applied, the object deforms

– each 𝑚 moves to a new location 𝑥(𝑚)

– 𝑢 𝑚 = 𝑥 𝑚 −𝑚 can be seen as the displacement

vector field

– e.g. a constant displacement field is a translation of the

object

13

Continuum mechanics

Game Physics

• Material coordinate 𝑃 with position 𝑋 is deformed

to 𝑝 with position 𝑥

• Material coordinate 𝑄 with position 𝑋 + 𝑑𝑋 is

deformed to 𝑞 with position 𝑥 + 𝑑𝑥

• If the deformation is very small (i.e. linear

deformation in interval ∆𝑡), the displacements of

the material coordinates can be described by

𝑥 + 𝑑𝑥 = 𝑋 + 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋
𝑑𝑥 = 𝑋 − 𝑥 + 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋
𝑑𝑥 = 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋 − 𝑢 𝑋
𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢

14

Continuum mechanics

Game Physics 15

Continuum mechanics

𝑃

𝑄

𝑋

𝑋 + 𝑑𝑋

𝑑𝑋

𝑂

𝑝

𝑞

𝑥

𝑥 + 𝑑𝑥

𝑑𝑥

𝑢(𝑋)

𝑢 𝑋 + 𝑑𝑋 = 𝑢 𝑋 + 𝑑𝑢

𝑢(𝑋)

𝑑𝑋

𝑑𝑢

𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢

Game Physics

• 𝑑𝑢 is the relative displacement vector

• It represents the relative displacement of 𝑄 with

respect to 𝑃 in the deformed configuration

• Now if we assume that 𝑄 is very close to 𝑃 and

that the displacement field is continuous, we have

𝑢 𝑋 + 𝑑𝑋 = 𝑢 𝑋 + 𝑑𝑢 ≈ 𝑢 𝑋 + 𝛻𝑢 ∗ 𝑑𝑋

 where the gradient of the displacement field is (in

 3D) the 3 × 3 matrix of the partial derivatives of 𝑢

𝛻𝑢 =

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

 where 𝑢 = 𝑢, 𝑣, 𝑤 𝑇

16

Continuum mechanics

Game Physics

• With that definition of the relative displacement

vector, we can calculate the relative position of 𝑞

𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢 = 𝑑𝑋 + 𝛻𝑢 ∗ 𝑑𝑋
𝑑𝑥 = 𝐼 + 𝛻𝑢 𝑑𝑋 = 𝐹 ∗ 𝑑𝑋

• We call 𝐹 the material deformation gradient tensor

• It characterizes the local deformation at a material

coordinate, i.e. provides a mapping between the

relative position at rest and the relative position

after deformation

17

Continuum mechanics

Game Physics

• The strain and stress are related to the material
deformation gradient tensor 𝐹, and so to the
displacement field 𝑢

• In interactive applications, we usually use the Green-
Cauchy strain tensors

𝜖𝐺 =
1

2
𝛻𝑢 + 𝛻𝑢 𝑇 + 𝛻𝑢 𝑇𝛻𝑢

𝜖𝐶 =
1

2
𝛻𝑢 + 𝛻𝑢 𝑇

• And stress tensor from Hooke’s linear material law

𝜎 = 𝐸 ∗ 𝜖

 where 𝐸 is the elasticity tensor and depends on the
 Young’s modulus and Poisson’s ratio (and more)

18

Strain and stress

Game Physics

• Two types of approaches are possible to simulate

deformable models

– Lagrangian methods (particle-based)

• a model consists of a set of moving points carrying material

properties

• convenient to define an object as a connected mesh of points or

a cloud of points, suitable for deformable soft bodies

• examples: Finite Element/Difference/Volume methods, Mass-

spring system, Coupled particle system, Smoothed particle

hydrodynamics

– Eulerian methods (grid-based)

• scene is a stationary set of points where the material properties

change over time

• boundary of object not explicitly defined, suitable for fluids

19

Modeling soft bodies

Game Physics

• FEM is used to numerically solve partial differential

equations (PDEs) by discretization of the volume

into a large finite number of disjoint elements (3D

volumetric mesh)

• The PDE of the equation of motion governing

dynamic elastic materials is given by

𝜌 ∗ 𝑎 = 𝛻 ∙ 𝜎 + 𝐹

 where 𝜌 is the density of the material, 𝑎 is the

 acceleration of the element, 𝛻 ∙ 𝜎 is the divergence

 of stress (internal forces) and 𝐹 the external forces

20

Finite Element Method

Game Physics

• First the deformation field 𝑢 is estimated from the

positions of the elements within the object

• Given the current local strain, the local stress is

calculated

• The equation of motion of the element nodes is

obtained by integrating the stress field over each

element and relating this to the node accelerations

through the deformation energy

𝐸 = 𝜖 𝑚 ∗ 𝜎 𝑚 𝑑𝑚

𝑉

21

Finite Element Method

Game Physics

• If the object 𝑀 is sampled using a regular spatial

grid, the PDE can be discretized using finite

differences (FD)

– easier to implement that FEM

– difficult to approximate complex boundaries

• Deformation energy comes from difference

between metric tensors of the deformed and

original shapes

• Derivative of this energy is discretized using FD

• Finally semi-implicit integration is used to move

forward through time

22

Finite Differences Method

Game Physics

• In the Finite Volume method, the nodal forces are not
calculated from the derivation of the deformation
energy

• But first internal forces 𝑓 per unit area of a plane (of
normal 𝑛) are calculated from the stress tensor

𝑓 = 𝜎 ∗ 𝑛

• The total force acting on a face 𝐴 of an element is

𝑓𝐴 = 𝜎 𝑑𝐴

𝐴

= 𝐴 ∗ 𝜎 ∗ 𝑛

 for planar element faces (stress tensor constant
 within an element)

• By iterating on all faces of an element, we can then
distribute (evenly) the force among adjacent nodes

23

Finite Volume Method

Game Physics

• The boundary element method simplifies the finite

element method from a 3D volume problem to a

2D surface problem

– PDE is given for boundary deformation

– only works for homogenous material

– topological changes more difficult to handle

24

Boundary Element Method

Game Physics

• An object consists of point masses connected by a

network of massless springs

• The state of the system is defined by the positions

𝑥𝑖 and velocities 𝑣𝑖 of the masses 𝑖 = 1⋯𝑛

• The force 𝑓𝑖 on each mass is computed from the

external forces (e.g. gravity, friction) and the spring

connections with its neighbors

• The motion of each mass point 𝑓𝑖 = 𝑚𝑖𝑎𝑖 is

summed up for the entire system in

𝑀 ∗ 𝑎 = 𝑓(𝑥, 𝑣)

 where 𝑀 is a 3𝑛 × 3𝑛 diagonal matrix

25

Mass-Spring System

Game Physics

• The mass points are usually regularly spaced in a

3D lattice

• The 12 edges are connected by structural springs

– resist longitudinal deformations

• Opposite corner mass points are connected by

shear springs

– resist shear deformations

• The rest lengths define the rest shape of the object

26

Mass-Spring System

Game Physics

• The force acting on mass point 𝑖 generated by the

spring connecting 𝑖 and 𝑗 is

𝑓𝑖 = 𝐾𝑠𝑖(𝑥𝑖𝑗 − 𝑙𝑖𝑗)
𝑥𝑖𝑗

𝑥𝑖𝑗

 where 𝑥𝑖𝑗 is the vector from positions 𝑖 to 𝑗, 𝐾𝑖 is

 the stiffness of the spring and 𝑙𝑖𝑗 is the rest length

• To simulate dissipation of energy along the

distance vector, a damping force is added

𝑓𝑖 = 𝐾𝑑𝑖
𝑣𝑗 − 𝑣𝑖

𝑇
𝑥𝑖𝑗

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

𝑥𝑖𝑗

27

Mass-Spring System

Game Physics

• Intuitive system and simple to implement

• Not accurate as does not necessarily converge to

correct solution

– depends on the mesh resolution and topology

– spring constants chosen arbitrarily

• Can be good enough for games, especially cloth

animation

– as can have strong stretching resistance and weak

bending resistance

28

Mass-Spring System

Game Physics

• Particles interact with each other depending on

their spatial relationship

• Referred to as spatially coupled particle system

– these relationships are dynamic, so geometric and

topological changes can take place

• Each particle 𝑝𝑖 has a potential energy 𝐸𝑃𝑖 which is

the sum of the pairwise potential energies between

the particle 𝑝𝑖 and the other particles

𝐸𝑃𝑖 = 𝐸𝑃𝑖𝑗
𝑗≠𝑖

29

Coupled Particle System

Game Physics

• The force 𝑓𝑖 applied on the particle at position 𝑝𝑖 is

𝑓𝑖 = −𝛻𝑝𝑖𝐸𝑃𝑖 = − 𝛻𝑝𝑖𝐸𝑃𝑖𝑗
𝑗≠𝑖

 where 𝛻𝑝𝑖𝐸𝑃𝑖 =
𝑑𝐸𝑃𝑖

𝑑𝑥𝑖
,
𝑑𝐸𝑃𝑖

𝑑𝑦𝑖
,
𝑑𝐸𝑃𝑖

𝑑𝑧𝑖

• To reduce computational costs, interactions to a

neighborhood is used

– potential energies weighted according to distance to

particle

30

Coupled Particle System

Game Physics

• SPH uses discrete particles to compute

approximate values of needed physical quantities

and their spatial derivatives

– obtained by a distance-weight sum of the relevant

properties of all the particles which lie within the range

of a smoothing kernel

• Reduces the programming and computational

complexity

– suitable for gaming applications

31

Smoothed Particle Hydrodynamics

Game Physics

• The equation for any quantity 𝐴 at any point 𝑟 is
given by

𝐴 𝑟 = 𝑚𝑗
𝐴𝑗

𝜌𝑗
𝑗

𝑊(𝑟 − 𝑟𝑗 , ℎ)

– where 𝑊 is the smoothing kernel (usually Gaussian
function or cubic spline) and ℎ the smoothing length
(max influence distance)

– for example the density can be calculated as

𝜌 𝑟 = 𝑚𝑗
𝑗

𝑊(𝑟 − 𝑟𝑗 , ℎ)

• It is applied to pressure and viscosity forces, while
external forces are applied directly to the particles

32

Smoothed Particle Hydrodynamics

Game Physics

• The spatial derivative of a quantity can be

calculated from the gradient of the kernel

– the equations of motion are solved by deriving forces

• By varying automatically the smoothing length of

individual particles you can tune the resolution of a

simulation depending on local conditions

– typically use a large length in low particle density

regions and a smaller length in high density regions

• Easy to conserve mass (constant number of

particles) but difficult to maintain incompressibility

of the material

33

Smoothed Particle Hydrodynamics

Game Physics

• Eulerian methods are typically used to simulate

fluids (liquids, smoke, lava, cloud, etc.)

• The scene is represented as a regular voxel grid,

and fluid dynamics describes the displacements

– we apply finite difference formulation on the voxel grid

– the velocity is stored on the cell faces and the pressure

is stored at the center of the cells

• Heavily rely on the Navier-Stokes equations of

motion for a fluid

34

Eulerian Methods

Game Physics

• They represent the conservation of mass and
momentum for an incompressible fluid

𝛻 ∙ 𝑢 = 0

𝜌 𝑢𝑡 + 𝑢 ∙ 𝛻𝑢 = 𝛻 ∙ 𝜈 𝛻𝑢 − 𝛻𝑝 + 𝑓

– 𝑢𝑡 is the time derivative of the fluid velocity (the
unknown), 𝑝 is the pressure field, 𝜈 is the kinematic
viscosity, 𝑓 is the body force per unit mass (usually just
gravity ρ𝑔)

35

Navier-Stokes equations

Inertia (per volume) Divergence of stress

Unsteady

acceleration

Convective

acceleration

Pressure

gradient
Viscosity

Other body

forces

Game Physics

• First 𝑓 is scaled by the time step and added to the

current velocity

• Then the advection term 𝑢 ∙ 𝛻𝑢 is solved

– it governs how a quantity moves with the underlying

velocity field (time independent, only spatial effect)

– it ensures the conservation of momentum

– sometimes called convection or transport

– solved using a semi-Lagrangian technique

36

Navier-Stokes equations

Game Physics

• Then the viscosity term 𝛻 ∙ 𝜈 𝛻𝑢 = 𝑣𝛻2𝑢 is solved

– it defines how a cell interchanges with its neighbors

– also referred to as diffusion

– viscous fluids can be achieved by applying diffusion to

the velocity field

– it can be solved for example by finite difference and an

explicit formulation

• 2-neighbor 1D:

 𝑢𝑖(𝑡) = 𝑣 ∗ ∆𝑡 ∗ 𝑢𝑖+1 + 𝑢𝑖−1 − 2𝑢𝑖

• 4-neighbor 2D:

𝑢𝑖,𝑗 𝑡 = 𝑣 ∗ ∆𝑡 ∗ 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗

• Taking the limit gives indeed 𝑣𝛻2𝑢

37

Navier-Stokes equations

Game Physics

• Finally, the pressure gradient is found so that the

final velocity will conserve the volume (i.e. mass

for incompressible fluid)

– sometimes called pressure projection

– it represents the resistance to compression −𝛻𝑝

38

Navier-Stokes equations

Lesser density

Greater density

Game Physics

• We make sure the velocity field stays divergence-

 free with the second equation 𝛻 ∙ 𝑢 = 0, i.e. the

 velocity flux of all faces at each fluid cell is zero

 (everything that comes in, goes out)

• The equation 𝑢 𝑡 + ∆𝑡 = 𝑢 𝑡 − ∆𝑡𝛻𝑝 is solved

from its combination with 𝛻 ∙ 𝑢 = 0, giving

𝛻 ∙ 𝑢 𝑡 + ∆𝑡 = 𝛻 ∙ 𝑢 𝑡 − ∆𝑡𝛻 ∙ 𝛻𝑝 = 0
⟺ ∆𝑡𝛻2𝑝 = 𝛻 ∙ 𝑢(𝑡)

 with which we solve for 𝑝, then plug back in the

 𝑢(𝑡 + ∆𝑡) equation to calculate the final velocity

39

Navier-Stokes equations

Game Physics

• Compressible fluids can also conserve mass, but

their density must change to do so

• Pressure on boundary nodes

– In free surface cells, the fluid can evolve freely (𝑝 = 0)
• so that for example a fluid can splash into the air

– Otherwise (e.g. in contact with a rigid body), the fluid

cannot penetrate the body but can flow freely in

tangential directions 𝑢𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∙ 𝑛 = 𝑢𝑏𝑜𝑑𝑦 ∙ 𝑛

40

Navier-Stokes equations

End of

Soft body physics

 Next

Physics engine design and

implementation

