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Soft body physics 



Game Physics 

• In reality, objects are not purely rigid 

– for some it is a good approximation  

– but if you hit them with enough force, they will deform or 

break down 

• In a game, you often want to see soft bodies (i.e. 

deformable objects) 

– car body, anything you punch or shoot at, etc. 

– piece of cloth, flag, paper sheet, etc. 

– snow, mud, lava, liquid, etc. 
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Soft bodies 



Game Physics 

• Elasticity is the primary concept in soft body 

physics 

• Property by which the body returns to its original 

shape after the forces causing the deformation are 

removed 

– A plastic rod can easily be bended, and returned to its 

original form 

– A steel rod is difficult to bend, but can also return to its 

original form 
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Elasticity 



Game Physics 

• The stress within an object is the magnitude of an 

applied force divided by the area of its application 

– large value when the force is large or when the surface 

is small 

• It is a pressure measure 𝜎 and has the unit Pascal 

𝑃𝑎 = 𝑁/𝑚2 

 

• Example 

– the stress on the plane 

   is σ = 𝑚𝑔/ 𝜋𝑟2  
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Stress 
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Game Physics 

• The strain on an object 𝜖 is the fractional 

deformation caused by a stress 

– dimensionless (change in dimension relative to original 

dimension) 

– measures how much a deformation differs from a rigid 

body transformation 

• negative if compression, zero if rigid body transformation, 

positive if stretch 

• Example 

– the strain on the 

rod is 𝜖 = ∆𝐿 𝐿  
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Game Physics 

• Stress and strain do not contain information about 

the specific material (i.e. deformation behavior) to 

which a force is applied 

• The amount of stress to produce a strain does 

• Therefore we can model it by the ratio of stress to 

strain 

– usually in a linear direction, along a planar region or 

throughout a volume region 

• Young’s modulus, Shear modulus, Bulk modulus 

– they describe the different ways the material changes 

shape due to stress 
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Body material 



Game Physics 

• The Young’s modulus is defined as the ratio of 

linear stress to linear strain 
 

𝑌 =
𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹/𝐴

∆𝐿/𝐿
 

 

• Example 
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Young’s modulus 

𝐿 + ∆𝐿 

𝐹 𝐴 



Game Physics 

• The Shear modulus is defined as the ratio of 

planar stress to planar strain 
 

𝑆 =
𝑝𝑙𝑎𝑛𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑝𝑙𝑎𝑛𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛
=
𝐹/𝐴

∆𝐿/𝐿
 

 

• Example 

 

9 

Shear modulus 
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Game Physics 

• The Bulk modulus is defined as the ratio of volume 

stress to volume strain (inverse of compressibility) 
 

𝐵 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑟𝑎𝑖𝑛
=
∆𝑃

∆𝑉/𝑉
 

 

• Example 
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Bulk modulus 
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Game Physics 

• The Poisson’s ratio is the ratio of transverse to 

axial strain 

𝜈 = −
𝑑 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

𝑑 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
 

– negative transverse strain in axial tension, positive in 

axial compression 

– negative axial strain in compression, positive in tension 

– equals 0.5 in perfectly incompressible material 

• If the force is applied along 𝑥 then we have 

𝜈 = −
𝑑𝜖𝑦

𝑑𝜖𝑥
= −
𝑑𝜖𝑧
𝑑𝜖𝑥
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Poisson’s ratio 



Game Physics 

• Example of a cube of size 𝐿 

 

 

 

𝑑𝜖𝑥 =
𝑑𝑥

𝑥
   𝑑𝜖𝑦 =

𝑑𝑦

𝑦
   𝑑𝜖𝑧 =

𝑑𝑧

𝑧
 

−𝜈 
𝑑𝑥

𝑥

𝐿+∆𝐿

𝐿

=  
𝑑𝑦

𝑦

𝐿−∆𝐿′

𝐿

=  
𝑑𝑧

𝑧

𝐿−∆𝐿′

𝐿

⇔ 

1 +
∆𝐿

𝐿

−𝑣

= 1 −
∆𝐿′

𝐿
⇔ 𝜈 ≈

∆𝐿′

∆𝐿
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Poisson’s ratio 
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8.1-8.5 



Game Physics 

• A deformable object is defined by its rest shape 

and the material parameters 

• In the discrete case, the object 𝑀 is a discrete set 

of points with material coordinates 𝑚 ∈ 𝑀 that 

samples the rest shape of the object 

• When forces are applied, the object deforms 

– each 𝑚 moves to a new location 𝑥(𝑚) 

– 𝑢 𝑚 = 𝑥 𝑚 −𝑚 can be seen as the displacement 

vector field 

– e.g. a constant displacement field is a translation of the 

object 
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Continuum mechanics 



Game Physics 

• Material coordinate 𝑃 with position 𝑋 is deformed 

to 𝑝 with position 𝑥 

• Material coordinate 𝑄 with position 𝑋 + 𝑑𝑋 is 

deformed to 𝑞 with position 𝑥 + 𝑑𝑥 

• If the deformation is very small (i.e. linear 

deformation in interval ∆𝑡), the displacements of 

the material coordinates can be described by 

𝑥 + 𝑑𝑥 = 𝑋 + 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋  
𝑑𝑥 = 𝑋 − 𝑥 + 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋  
𝑑𝑥 = 𝑑𝑋 + 𝑢 𝑋 + 𝑑𝑋 − 𝑢 𝑋  
𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢 
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Continuum mechanics 



Game Physics 15 

Continuum mechanics 
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𝑋 
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𝑥 + 𝑑𝑥 

𝑑𝑥 

𝑢(𝑋) 
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𝑢(𝑋) 

𝑑𝑋 

𝑑𝑢 

𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢 



Game Physics 

• 𝑑𝑢 is the relative displacement vector 

• It represents the relative displacement of 𝑄 with 

respect to 𝑃 in the deformed configuration 

• Now if we assume that 𝑄 is very close to 𝑃 and 

that the displacement field is continuous, we have 

𝑢 𝑋 + 𝑑𝑋 = 𝑢 𝑋 + 𝑑𝑢 ≈ 𝑢 𝑋 + 𝛻𝑢 ∗ 𝑑𝑋 

   where the gradient of the displacement field is (in  

   3D) the 3 × 3 matrix of the partial derivatives of 𝑢 

𝛻𝑢 =

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

 where 𝑢 = 𝑢, 𝑣, 𝑤 𝑇 
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Continuum mechanics 



Game Physics 

• With that definition of the relative displacement 

vector, we can calculate the relative position of 𝑞 
 

𝑑𝑥 = 𝑑𝑋 + 𝑑𝑢 = 𝑑𝑋 + 𝛻𝑢 ∗ 𝑑𝑋 
𝑑𝑥 = 𝐼 + 𝛻𝑢 𝑑𝑋 = 𝐹 ∗ 𝑑𝑋 

 

• We call 𝐹 the material deformation gradient tensor 

• It characterizes the local deformation at a material 

coordinate, i.e. provides a mapping between the 

relative position at rest and the relative position 

after deformation 
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Continuum mechanics 



Game Physics 

• The strain and stress are related to the material 
deformation gradient tensor 𝐹, and so to the 
displacement field 𝑢 

• In interactive applications, we usually use the Green-
Cauchy strain tensors 

𝜖𝐺 =
1

2
𝛻𝑢 + 𝛻𝑢 𝑇 + 𝛻𝑢 𝑇𝛻𝑢  

𝜖𝐶 =
1

2
𝛻𝑢 + 𝛻𝑢 𝑇  

• And stress tensor from Hooke’s linear material law 

𝜎 = 𝐸 ∗ 𝜖 

   where 𝐸 is the elasticity tensor and depends on the  
   Young’s modulus and Poisson’s ratio (and more) 
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Strain and stress 



Game Physics 

• Two types of approaches are possible to simulate 

deformable models 

– Lagrangian methods (particle-based) 

• a model consists of a set of moving points carrying material 

properties 

• convenient to define an object as a connected mesh of points or 

a cloud of points, suitable for deformable soft bodies 

• examples: Finite Element/Difference/Volume methods, Mass-

spring system, Coupled particle system, Smoothed particle 

hydrodynamics 

– Eulerian methods (grid-based) 

• scene is a stationary set of points where the material properties 

change over time 

• boundary of object not explicitly defined, suitable for fluids 
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Modeling soft bodies 



Game Physics 

• FEM is used to numerically solve partial differential 

equations (PDEs) by discretization of the volume 

into a large finite number of disjoint elements (3D 

volumetric mesh) 
 

• The PDE of the equation of motion governing 

dynamic elastic materials is given by 

𝜌 ∗ 𝑎 = 𝛻 ∙ 𝜎 + 𝐹 

    where 𝜌 is the density of the material, 𝑎 is the  

    acceleration of the element, 𝛻 ∙ 𝜎 is the divergence 

    of stress (internal forces) and 𝐹 the external forces 
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Finite Element Method 



Game Physics 

• First the deformation field 𝑢 is estimated from the 

positions of the elements within the object 

• Given the current local strain, the local stress is 

calculated 

• The equation of motion of the element nodes is 

obtained by integrating the stress field over each 

element and relating this to the node accelerations 

through the deformation energy 

𝐸 =  𝜖 𝑚 ∗ 𝜎 𝑚  𝑑𝑚
 

𝑉
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Finite Element Method 



Game Physics 

• If the object 𝑀 is sampled using a regular spatial 

grid, the PDE can be discretized using finite 

differences (FD) 

– easier to implement that FEM 

– difficult to approximate complex boundaries 

• Deformation energy comes from difference 

between metric tensors of the deformed and 

original shapes 

• Derivative of this energy is discretized using FD 

• Finally semi-implicit integration is used to move 

forward through time 
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Finite Differences Method 



Game Physics 

• In the Finite Volume method, the nodal forces are not 
calculated from the derivation of the deformation 
energy 

• But first internal forces 𝑓 per unit area of a plane (of 
normal 𝑛) are calculated from the stress tensor 

𝑓 = 𝜎 ∗ 𝑛 

• The total force acting on a face 𝐴 of an element is 

𝑓𝐴 =  𝜎 𝑑𝐴
 

𝐴

= 𝐴 ∗ 𝜎 ∗ 𝑛 

    for planar element faces (stress tensor constant 
    within an element) 

• By iterating on all faces of an element, we can then 
distribute (evenly) the force among adjacent nodes 
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Finite Volume Method 



Game Physics 

• The boundary element method simplifies the finite 

element method from a 3D volume problem to a 

2D surface problem 

– PDE is given for boundary deformation 

– only works for homogenous material 

– topological changes more difficult to handle 
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Boundary Element Method 



Game Physics 

• An object consists of point masses connected by a 

network of massless springs 

• The state of the system is defined by the positions 

𝑥𝑖 and velocities 𝑣𝑖 of the masses 𝑖 = 1⋯𝑛 

• The force 𝑓𝑖 on each mass is computed from the 

external forces (e.g. gravity, friction) and the spring 

connections with its neighbors 

• The motion of each mass point 𝑓𝑖 = 𝑚𝑖𝑎𝑖 is 

summed up for the entire system in 

𝑀 ∗ 𝑎 = 𝑓(𝑥, 𝑣) 

    where 𝑀 is a 3𝑛 × 3𝑛 diagonal matrix 

25 

Mass-Spring System 



Game Physics 

• The mass points are usually regularly spaced in a 

3D lattice 

• The 12 edges are connected by structural springs 

– resist longitudinal deformations 

• Opposite corner mass points are connected by 

shear springs 

– resist shear deformations 

• The rest lengths define the rest shape of the object 
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Mass-Spring System 



Game Physics 

• The force acting on mass point 𝑖 generated by the 

spring connecting 𝑖 and 𝑗 is 

𝑓𝑖 = 𝐾𝑠𝑖( 𝑥𝑖𝑗 − 𝑙𝑖𝑗)
𝑥𝑖𝑗

𝑥𝑖𝑗
 

    where 𝑥𝑖𝑗 is the vector from positions 𝑖 to 𝑗, 𝐾𝑖 is 

    the stiffness of the spring and 𝑙𝑖𝑗 is the rest length 

• To simulate dissipation of energy along the 

distance vector, a damping force is added 

𝑓𝑖 = 𝐾𝑑𝑖
𝑣𝑗 − 𝑣𝑖

𝑇
𝑥𝑖𝑗

𝑥𝑖𝑗
𝑇𝑥𝑖𝑗

𝑥𝑖𝑗 
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Mass-Spring System 



Game Physics 

• Intuitive system and simple to implement 

• Not accurate as does not necessarily converge to 

correct solution 

– depends on the mesh resolution and topology 

– spring constants chosen arbitrarily 

• Can be good enough for games, especially cloth 

animation 

– as can have strong stretching resistance and weak 

bending resistance 
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Mass-Spring System 



Game Physics 

• Particles interact with each other depending on 

their spatial relationship 

• Referred to as spatially coupled particle system 

– these relationships are dynamic, so geometric and 

topological changes can take place 

• Each particle 𝑝𝑖 has a potential energy 𝐸𝑃𝑖 which is 

the sum of the pairwise potential energies between 

the particle 𝑝𝑖 and the other particles 

𝐸𝑃𝑖 = 𝐸𝑃𝑖𝑗
𝑗≠𝑖
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Coupled Particle System 



Game Physics 

• The force 𝑓𝑖 applied on the particle at position 𝑝𝑖 is 

𝑓𝑖 = −𝛻𝑝𝑖𝐸𝑃𝑖 = − 𝛻𝑝𝑖𝐸𝑃𝑖𝑗
𝑗≠𝑖

 

    where 𝛻𝑝𝑖𝐸𝑃𝑖 =
𝑑𝐸𝑃𝑖

𝑑𝑥𝑖
,
𝑑𝐸𝑃𝑖

𝑑𝑦𝑖
,
𝑑𝐸𝑃𝑖

𝑑𝑧𝑖
 

• To reduce computational costs, interactions to a 

neighborhood is used 

– potential energies weighted according to distance to 

particle 
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Coupled Particle System 



Game Physics 

• SPH uses discrete particles to compute 

approximate values of needed physical quantities 

and their spatial derivatives 

– obtained by a distance-weight sum of the relevant 

properties of all the particles which lie within the range 

of a smoothing kernel 

• Reduces the programming and computational 

complexity 

– suitable for gaming applications 
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Smoothed Particle Hydrodynamics 



Game Physics 

• The equation for any quantity 𝐴 at any point 𝑟 is 
given by 

𝐴 𝑟 = 𝑚𝑗
𝐴𝑗

𝜌𝑗
𝑗

𝑊( 𝑟 − 𝑟𝑗 , ℎ) 

– where 𝑊 is the smoothing kernel (usually Gaussian 
function or cubic spline) and ℎ the smoothing length 
(max influence distance) 

– for example the density can be calculated as 

𝜌 𝑟 = 𝑚𝑗
𝑗

𝑊( 𝑟 − 𝑟𝑗 , ℎ) 

• It is applied to pressure and viscosity forces, while 
external forces are applied directly to the particles 
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Smoothed Particle Hydrodynamics 



Game Physics 

• The spatial derivative of a quantity can be 

calculated from the gradient of the kernel 

– the equations of motion are solved by deriving forces 

• By varying automatically the smoothing length of 

individual particles you can tune the resolution of a 

simulation depending on local conditions 

– typically use a large length in low particle density 

regions and a smaller length in high density regions 

• Easy to conserve mass (constant number of 

particles) but difficult to maintain incompressibility 

of the material 
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Smoothed Particle Hydrodynamics 



Game Physics 

• Eulerian methods are typically used to simulate 

fluids (liquids, smoke, lava, cloud, etc.) 

• The scene is represented as a regular voxel grid, 

and fluid dynamics describes the displacements 

– we apply finite difference formulation on the voxel grid 

– the velocity is stored on the cell faces and the pressure 

is stored at the center of the cells 

• Heavily rely on the Navier-Stokes equations of 

motion for a fluid 
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Eulerian Methods 



Game Physics 

• They represent the conservation of mass and 
momentum for an incompressible fluid 
 

𝛻 ∙ 𝑢 = 0 

 
 

𝜌 𝑢𝑡 + 𝑢 ∙ 𝛻𝑢 = 𝛻 ∙ 𝜈 𝛻𝑢 − 𝛻𝑝 + 𝑓 
 

 

 

– 𝑢𝑡 is the time derivative of the fluid velocity (the 
unknown), 𝑝 is the pressure field, 𝜈 is the kinematic 
viscosity, 𝑓 is the body force per unit mass (usually just 
gravity ρ𝑔) 
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Navier-Stokes equations 
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Game Physics 

• First 𝑓 is scaled by the time step and added to the 

current velocity 

• Then the advection term 𝑢 ∙ 𝛻𝑢 is solved 

– it governs how a quantity moves with the underlying 

velocity field (time independent, only spatial effect) 

– it ensures the conservation of momentum 

– sometimes called convection or transport 

– solved using a semi-Lagrangian technique 
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Navier-Stokes equations 



Game Physics 

• Then the viscosity term 𝛻 ∙ 𝜈 𝛻𝑢 = 𝑣𝛻2𝑢 is solved 

– it defines how a cell interchanges with its neighbors 

– also referred to as diffusion 

– viscous fluids can be achieved by applying diffusion to 

the velocity field 

– it can be solved for example by finite difference and an 

explicit formulation 

• 2-neighbor 1D: 

   𝑢𝑖(𝑡) = 𝑣 ∗ ∆𝑡 ∗ 𝑢𝑖+1 + 𝑢𝑖−1 − 2𝑢𝑖  

• 4-neighbor 2D: 

𝑢𝑖,𝑗 𝑡 = 𝑣 ∗ ∆𝑡 ∗ 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗  

• Taking the limit gives indeed 𝑣𝛻2𝑢 
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Navier-Stokes equations 



Game Physics 

• Finally, the pressure gradient is found so that the 

final velocity will conserve the volume (i.e. mass 

for incompressible fluid) 

– sometimes called pressure projection 

– it represents the resistance to compression −𝛻𝑝 
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Navier-Stokes equations 

Lesser density 

Greater density 



Game Physics 

• We make sure the velocity field stays divergence- 

    free with the second equation 𝛻 ∙ 𝑢 = 0, i.e. the 

    velocity flux of all faces at each fluid cell is zero 

    (everything that comes in, goes out) 

• The equation 𝑢 𝑡 + ∆𝑡 = 𝑢 𝑡 − ∆𝑡𝛻𝑝 is solved 

from its combination with 𝛻 ∙ 𝑢 = 0, giving 

𝛻 ∙ 𝑢 𝑡 + ∆𝑡 = 𝛻 ∙ 𝑢 𝑡 − ∆𝑡𝛻 ∙ 𝛻𝑝 = 0 
⟺ ∆𝑡𝛻2𝑝 = 𝛻 ∙ 𝑢(𝑡) 

    with which we solve for 𝑝, then plug back in the 

    𝑢(𝑡 + ∆𝑡) equation to calculate the final velocity 
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Navier-Stokes equations 



Game Physics 

• Compressible fluids can also conserve mass, but 

their density must change to do so 

• Pressure on boundary nodes 

– In free surface cells, the fluid can evolve freely (𝑝 = 0) 
• so that for example a fluid can splash into the air 

– Otherwise (e.g. in contact with a rigid body), the fluid 

cannot penetrate the body but can flow freely in 

tangential directions 𝑢𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∙ 𝑛 = 𝑢𝑏𝑜𝑑𝑦 ∙ 𝑛 
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Navier-Stokes equations 



End of 

Soft body physics 

 

 Next 

Physics engine design and 

implementation 


